#version 450 layout(location = 0) in vec3 frag_world_position; layout(location = 1) in vec3 frag_world_normal; layout(location = 2) in vec2 frag_tex_coord; struct Material { vec4 base_color; float metallic_factor; float roughness_factor; vec2 _padding; }; layout(set = 0, binding = 0) uniform UniformBufferObject { mat4 model; mat4 view; mat4 proj; vec3 camera_pos; float _padding; Material material; } ubo; layout(set = 0, binding = 1) uniform sampler2D albedo_map; layout(set = 0, binding = 2) uniform sampler2D metallic_roughness_map; layout(set = 0, binding = 3) uniform sampler2D normal_map; layout(location = 0) out vec4 out_color; const float PI = 3.14159265359; // PBR functions vec3 fresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0); } float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH*NdotH; float nom = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return nom / max(denom, 0.0000001); } float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r*r) / 8.0; float nom = NdotV; float denom = NdotV * (1.0 - k) + k; return nom / denom; } float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } void main() { // Sample textures vec4 albedo = texture(albedo_map, frag_tex_coord); vec2 metallic_roughness = texture(metallic_roughness_map, frag_tex_coord).bg; vec3 normal = normalize(2.0 * texture(normal_map, frag_tex_coord).rgb - 1.0); float metallic = metallic_roughness.x * ubo.material.metallic_factor; float roughness = metallic_roughness.y * ubo.material.roughness_factor; vec3 N = normalize(normal); vec3 V = normalize(ubo.camera_pos - frag_world_position); // Calculate reflectance at normal incidence vec3 F0 = vec3(0.04); F0 = mix(F0, albedo.rgb, metallic); // Light parameters vec3 light_positions[4] = vec3[]( vec3(5.0, 5.0, 5.0), vec3(-5.0, 5.0, 5.0), vec3(5.0, -5.0, 5.0), vec3(-5.0, -5.0, 5.0) ); vec3 light_colors[4] = vec3[]( vec3(23.47, 21.31, 20.79), vec3(23.47, 21.31, 20.79), vec3(23.47, 21.31, 20.79), vec3(23.47, 21.31, 20.79) ); // Reflectance equation vec3 Lo = vec3(0.0); for(int i = 0; i < 4; ++i) { vec3 L = normalize(light_positions[i] - frag_world_position); vec3 H = normalize(V + L); float distance = length(light_positions[i] - frag_world_position); float attenuation = 1.0 / (distance * distance); vec3 radiance = light_colors[i] * attenuation; // Cook-Torrance BRDF float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); vec3 F = fresnelSchlick(clamp(dot(H, V), 0.0, 1.0), F0); vec3 numerator = NDF * G * F; float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0); vec3 specular = numerator / max(denominator, 0.001); vec3 kS = F; vec3 kD = vec3(1.0) - kS; kD *= 1.0 - metallic; float NdotL = max(dot(N, L), 0.0); Lo += (kD * albedo.rgb / PI + specular) * radiance * NdotL; } vec3 ambient = vec3(0.03) * albedo.rgb; vec3 color = ambient + Lo; // HDR tonemapping color = color / (color + vec3(1.0)); // gamma correction color = pow(color, vec3(1.0/2.2)); out_color = vec4(color, albedo.a); }